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Abstract
The present paper reveals important properties of the confluent Heun’s
functions. We derive a set of novel relations for confluent Heun’s functions
and their derivatives of arbitrary order. Specific new subclasses of confluent
Heun’s functions are introduced and studied. A new alternative derivation of
confluent Heun’s polynomials is presented.

PACS numbers: 02.30.Gp, 02.30.Hq

1. Introduction

The solutions of the confluent Heun’s differential equation [1–6], written in the simplest
uniform shape [7]

H ′′ +

(
α +

β + 1

z
+

γ + 1

z − 1

)
H ′ +

(
μ

z
+

ν

z − 1

)
H = 0, (1.1)

are of continuous and significant interest for many applications in different areas of natural
sciences and especially in physics.

Equation (1.1) has three singular points: two regular ones—z = 0 and z = 1—and one
irregular one—z = ∞. The standard confluent Heun’s function HeunC(α, β, γ, δ, η, z) is
a unique particular solution, which is regular around the regular singular point z = 0. It is
defined via the convergent in the disc |z| < 1 Taylor series expansion

HeunC(α, β, γ, δ, η, z) =
∞∑

n=0

vn(α, β, γ, δ, η)zn, (1.2)

assuming the normalization HeunC(α, β, γ, δ, η, 0) = 1. The parameters α, β, γ, δ, η,
introduced in [3, 4] and used in the widespread computer package Maple, are related with μ
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and ν according to the equations μ = 1
2 (α − β − γ + αβ − βγ ) − η and ν = 1

2 (α + β + γ +
αγ + βγ ) + δ + η.

The coefficients vn(α, β, γ, δ, η) are determined by the three-term recurrence relation

Anvn = Bnvn−1 + Cnvn−2, (1.3)

with the initial condition v−1 = 0, v0 = 1. Here,

An = 1 +
β

n
→ 1, when n → ∞,

Bn = 1 +
−α + β + γ − 1

n
+

η − (−α + β + γ )/2 − αβ/2 + βγ/2

n2
→ 1, when n → ∞,

Cn = α

n2

(
δ

α
+

β + γ

2
+ n − 1

)
→ 0, when n → ∞. (1.4)

According to [1–6] the function HeunC(α, β, γ, δ, η, z) reduces to a polynomial of degree
N � 0 with respect to the variable z if and only if the following two conditions are satisfied:

δ

α
+

β + γ

2
+ N + 1 = 0, (1.5a)

�N+1(μ) = 0. (1.5b)

Further on we call the first condition (1.5a)—a ‘δN -condition’—and the second one
(1.5b)—a ‘�N+1-condition’. One can find an explicit form of the left-hand side �N+1(μ) of
condition (1.5b), convenient for practical calculations, in the appendix.

Indeed, the δN -condition is equivalent to the equation CN+2 = 0, and the �N+1-condition
turns to be equivalent to the requirement vN+1(α, β, γ, δ, η) = 0. Then as a result of
equation (1.3) and additional conditions (1.5) we obtain vN+2(α, β, γ, δ, η) = 0. Since
two consecutive terms in the tree-term recurrence relation (1.3) are zero, all next terms are
zero, too. Hence, under simultaneous fulfilment of the two additional conditions (1.5), the
confluent Heun function HeunC(α, β, γ, δ, η, z) (1.2) reduces to a polynomial of degree N.

In this paper we derive a set of novel relations and differential equations for confluent
Heun’s functions (1.2) and their derivatives dn

dzn HeunC(α, β, γ, δ, η, z) of arbitrary order n,
see section 2. In section 3 we introduce a new subclass of confluent Heun’s functions
HeunCN(α, β, γ, η, z), which obey only the δN -condition (1.5a), as well as their associate
confluent Heun’s functions HeunCN(α, β, γ, η, z). In section 4 we utilize the newly found
relations to present an alternative derivation of the confluent Heun’s polynomials without use
of the recurrence relation (1.3). Thus, our consideration reveals important new properties of
the confluent Heun functions.

In the concluding section 5 we briefly discuss the relation of our results for confluent
Heun’s functions with similar results for general Heun’s functions.

The confluent Heun’s functions HeunC(α, β, γ, δ, η, z), the specific classes of
δN -confluent Heun’s functions HeunCN(α, β, γ, η, z) and their associated functions
HeunCN(α, β, γ, η, z), as well as confluent Heun’s polynomials PHeunCN,k(α, β, γ, z), play
a very important role in some applications, especially in gravitational physics [7–16]. The
present study of their properties was inspired by our desire to reach a true mathematical and
physical understanding of the important Teukolsky–Starobinsky identities, derived and used
in the early articles [17–19]. We present here the formal mathematical results, which can be
applied, too, in other scientific domains, both for analytical and for numerical calculations.
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2. Novel relations for the confluent Heun’s functions and their derivatives

Let us define the differential expression

D̂α,β,γ,δ,η = z(z − 1)

(
d2

dz2
+

(
α +

β + 1

z
+

γ + 1

z − 1

)
d

dz
+

μ

z
+

ν

z − 1

)
. (2.1)

One can use it to write down the confluent Heun equation (1.1) in the following compact
form:

D̂α,β,γ,δ,ηH = 0. (2.2)

It can be shown that certain restrictions of the differential expression D̂α,β,γ,δ,η on proper
functional spaces yield self-adjoint differential operators [5]. In the present paper we will skip
the detail, needed for justification of the operators’ domains and proper scalar products in the
corresponding linear spaces of functions. Here, we restrict our consideration only to formal
manipulations with differential expressions like (2.1).

The confluent Heun’s operator D̂α,β,γ,δ,η (2.1) owns a remarkable property. Its
eigenfunctions Hλ(z) for eigenvalues λ �= 0, i.e. the solutions of the ordinary differential
equation

D̂α,β,γ,δ,ηHλ(z) = λHλ(z), (2.3)

are at the same time solutions of confluent Heun’s equation (2.2) with the same parameters
α, β, γ, δ and a different parameter η′ = η − λ. For them the following confluent Heun’s
equation takes place:

D̂α,β,γ,δ,η−λHλ(z) = 0, ∀ λ ∈ C. (2.4)

Indeed, equation (2.3) obviously can be rewritten in the form (2.2) with μ′ = μ + λ and
ν ′ = ν − λ. Then, using the relations δ = ν + μ− α

(
β + γ

2 − 1
)

and η = 1
2 (α −β − γ +

αβ −βγ )− μ one obtains the above result.
Commuting D̂α,β,γ,δ,η with the differential expression dn

dzn we derive the basic novel
relation
dn

dzn
D̂α,β,γ,δ,η = D̂α(n),β(n),γ (n),δ(n),η(n)

dn

dzn

+ nα

(
δ

α
+

β + γ

2
+ n

)
dn−1

dzn−1
, n = 0, 1, 2, . . . . (2.5)

The transformation {α, β, γ, δ, η} → {α(n), β(n), γ (n), δ(n), η(n)} defined by the relations

α(n) = α, β(n) = β + n, γ (n) = γ + n,
δ(n)

α(n)
= δ

α
+ n,

η(n) = η +
n

2
(n − α + β + γ ) (2.6)

yields a specific augmentation of the indices α, β, γ, δ and η.
To simplify our notations we will use further on the following ones:

D̂α,β,γ,δ,η ≡ D̂0, D̂α(1),β(1),γ (1),δ(1),η(1) ≡ D̂1, . . . , D̂α(n),β(n),γ (n),δ(n),η(n) ≡ D̂n, . . . .

(2.7)

Applying equation (2.5) to the arbitrary solution H(z) of confluent Heun’s
equation (2.2) we obtain the following four-term recurrence relation for the derivatives
dn

dzn H(z) = H(n)(z):

D̂nH
(n)(z) = −nα

(
δ

α
+

β + γ

2
+ n

)
H(n−1)(z), n = 0, 1, 2, . . . . (2.8)
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For n � 2 it can be considered, too, as an ordinary differential equation of third order for the
functions H(n−1)(z).

Then applying several times equation (2.8) we obtain the following sequence of relations
for the arbitrary solution H(z) of confluent Heun’s equation (2.2):

D̂1D̂2 · · · D̂nH
(n)(z) = (−α)nn!

(
δ

α
+

β + γ

2
+ 1

)
n

H(z), n = 1, 2, . . . . (2.9)

Here, (x)n = 
(x + n)/
(x) = x(x + 1) · · · (x + n − 1) stands for the Pochhammer symbol
[2].

Finally, applying D̂0 to both sides of equation (2.9) we end with the ordinary differential
equations of order 2(n + 1) for derivatives H(n)(z) of the solution H(z) of confluent Heun’s
equation (2.2):

D̂0D̂1 · · · D̂nH
(n)(z) = 0, n = 1, 2, . . . . (2.10)

Relations (2.9) obviously show that any solution H(z) of confluent Heun’s
equation (2.2) is an eigenfunction of the operator D̂1D̂2 · · · D̂n

dn

dzn and (−α)n n!
(

δ
α

+ β+γ

2 + 1
)
n

is the corresponding eigenvalue. Relations (2.10) show that the solutions H(z) of the confluent
Heun’s equation belong simultaneously to the null spaces of the infinite sequence of linear
operators D̂0D̂1 · · · D̂n

dn

dzn : n = 0, 1, 2 . . ..

3. New subclass of confluent Heun’s functions

When the δN -condition (1.5a) is fulfilled, one obtains δ = −α
(

β+γ

2 + N + 1
) = δN for some

fixed nonnegative integer N � 0. Then for any function H(z) ∈ CN+3 equation (2.5) reduces
to

dN+1

dzN+1
(D̂0H) = D̂N+1

(
dN+1H

dzN+1

)
. (3.1)

This relation shows that in the case under consideration the operator dN+1

dzN+1 defines a

specific generalized Darboux transformation [20] for the confluent Heun’s operator D̂0. It is
remarkable that on the right-hand side of equation (3.1) we have just another confluent Heun’s
operator—D̂N+1. As a result, if the function Hλ(z) with δ = δN is an eigenfunction of the
confluent Heun operator D̂0 for some eigenvalue λ, then relation (3.1) shows that the function
dN+1

dzN+1 Hλ(z) is an eigenfunction to the corresponding operator D̂N+1 for the same eigenvalue λ.
Note that the condition δ = δN is invariant under arbitrary changes of the eigenvalue λ.

The operator D̂0 with δ = δN preserves the linear envelope of its eigenfunctions with different
λ, with the same δ = δN and fixed nonnegative integer N. The discussion of equation (2.3)
at the beginning of section 2 shows that studying this linear space of functions, further on we
can restrict our consideration to the case λ = 0. All formulae for λ �= 0 can be obtained from
the ones for λ = 0 replacing η with η − λ.

Suppose the function H(z) is in addition a solution of equation (2.2). Then relation (3.1)
yields the following novel confluent Heun’s equation for the derivative dN+1H

dzN+1 :

D̂N+1

(
dN+1H

dzN+1

)
= 0. (3.2)

Consider the two unique solutions of Heun’s differential equations (2.2) and (3.2), which
are simultaneously regular at the point z = 0 and equated to unity at this point. Then
these solutions are precisely the two confluent Heun’s functions HeunC(α, β, γ, δN , η, z) and
HeunC(α(N + 1), β(N + 1), γ (N + 1), δN(N + 1), η(N + 1), z), the last being constructed
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according to equations (2.6). For them the uniqueness theorem and the uniform normalization
at the point z = 0 yield the novel relation1

dN+1

dzN+1
HeunC(α, β, γ, δN , η, z) = (N + 1)!vN+1(α, β, γ, δN , η)

× HeunC(α(N + 1), β(N + 1), γ (N + 1), δN(N + 1), η(N + 1), z). (3.3)

Here, we have used the (N + 1)st coefficient in the Taylor series expansion (1.2).

Definition 1. We call δN -confluent-Heun’s functions the functions HeunC(α, β, γ, δN , η, z)

which obey the δN -condition for some specific nonnegative integer N � 0 and denote them as

HeunCN(α, β, γ, η, z) = HeunC(α, β, γ,−α (N + 1 + (β + γ )/2) , η, z). (3.4)

Definition 2. We call associate δN -confluent-Heun’s functions the functions

HeunCN(α, β, γ, η, z) (3.5)

= HeunC(α, β + N + 1, γ + N + 1,−α(β + γ )/2, η + (N + 1)(N + 1 − α + β + γ )/2, z).

(3.6)

Now relation (3.3) can be represented in the short form

dN+1

dzN+1
HeunCN(α, β, γ, η, z) = PN(α, β, γ, η)HeunCN(α, β, γ, η, z), (3.7)

where we are using the specific constant

PN(α, β, γ, η) = (N + 1)!vN+1(α, β, γ,−α (N + 1 + (β + γ )/2) , η). (3.8)

According to relations (2.6) we obtain δN(N + 1)/α(N + 1)+
(
β(N + 1) + γ (N + 1)

)
/2 =

N + 1 > 0. Thus the δN -condition is not fulfilled for the associated δN -confluent-Heun’s
function HeunCN(α, β, γ, η, z). Hence, it does not belong to the class of the δN -confluent-
Heun’s functions.

4. A new derivation of the confluent Heun’s polynomials

Now we are prepared for an alternative derivation of the confluent Heun’s polynomials without
using the three-term recurrence relation (1.3), i.e. directly from confluent Heun’s equation.
Indeed, posing the requirement

PN(α, β, γ, η) = 0, (4.1)

which is a new form of condition (1.5b), we obtain dN+1

dzN+1 HeunCN(α, β, γ, η, z) = 0. Thus,
under condition (4.1) the δN -confluent-Heun’s function HeunCN(α, β, γ, η, z) becomes a
polynomial of degree N.2

1 The explicit form relation (3.3) reads

dN+1

dzN+1
HeunC

(
α, β, γ,−α

(
α + β

2
+ N + 1

)
, η, z

)
= (N + 1)!vN+1

(
α, β, γ, −α

(
α + β

2
+ N + 1

)
, η

)

× HeunC

⎛
⎝α, β + N + 1, γ + N + 1, −α

β + γ

2
, η +

N + 1

2

(
N + 1 − α + β + γ

)
, z

)

for all α, β, γ, η ∈ C (when β is not a negative integer) and for any fixed N ∈ Z, N � 0.
2 Note that condition (4.1) coincides with condition (1.5b) and its explicit form (A.2) up to a nonzero numerical
factor. It can be shown that constant (3.8) is simply related to the Starobinsky constant (see [15] and [17–19]).
Equation (4.1) recovers the mathematical meaning of the zero-Starobinsky-constant condition.

5
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The explicit form (A.2) of the polynomial condition (4.1) is given in the appendix. As
seen, it presents an algebraic equation of degree (N + 1) for the spectral parameter μ of
the confluent Heun’s equation. Then from equation (A.2) we obtain (N + 1)-in-number
roots μk=1,...,N+1(α, β, γ ), which yield (N + 1)-in-number values ηk=1,...,N+1(α, β, γ ) =
1
2 (α − β − γ + αβ − βγ ) − μk=1,...,N+1(α, β, γ ) of the parameter η. Hence, condition
(4.1) defines (N + 1)-in-number polynomial solutions

PHeunCN,k(α, β, γ, z) = HeunCN(α, β, γ, ηk, z), k = 1, . . . , N + 1, (4.2)

to the confluent Heun’s equation, each being polynomial of degree N of the variable z.
One can find further information about the mathematical properties of the confluent Heun’s

polynomials PHeunCN,k(α, β, γ, z) in [5]. As a by-product we obtain that under conditions
(1.5) the confluent Heun’s operator D̂α,β,γ,δ,η (2.1) becomes a quasi-solvable one in the sense
of [20].

The associate δN -confluent function HeunCN(α, β, γ, η, z) does not become a polynomial
under condition (4.1). Indeed, the corresponding δN -condition is never fulfilled for
it when N � 0—see the end of the previous section. This proofs that the
function HeunCN(α, β, γ, η, z) is not a polynomial when the δN -confluent function
HeunCN(α, β, γ, η, z) is.

5. Some comments and concluding remarks

Both for the general and for the confluent hypergeometric functions a set of simple and
universal representations of their repeated derivatives in terms of another hypergeometric
functions are well known and widely used, see for example [21].

At present, the corresponding mathematical theory is still not developed enough to have a
complete picture for this problem in the case of different Heun’s functions. For general Heun’s
functions analogous relations seem to exist only for some particular cases, see for example
[20, 22, 23]. In the literature known to us, one cannot find similar relations for confluent
Heun’s functions. In the present paper we fill this gap by partially taking into account the
specific properties of the confluent Heun’s functions.

The general Heun’s equation, written in the universal Fuchsian form

H ′′ +

(
γ

G

z
+

δ
G

z − 1
+

ε
G

z − 1/a

)
H ′ +

α
G
β

G
z − q

z(z − 1)(z − 1/a)
H = 0,

γ
G

+ δ
G

+ ε
G

= α
G

+ β
G

+ 1,

(5.1)

was constructed by Karl Heun in [1] as a generalization of the standard hypergeometric
equation, by adding one more regular singular point: z = 1/a ∈ (1,∞). Putting γ

G
= β + 1,

δ
G

= γ + 1, ε
G

= −α/a, α
G
β

G
= −(μ + ν)/a, q = −μ/a, and taking the limit a → 0,

we obtain the confluent Heun’s equation (1.2) by coalescence of the regular singular points
z = 1/a and z = ∞ in equation (5.1).

Unfortunately, such a coalescence process in the very solutions and corresponding
relations is much more complicated and, as a rule, not possible. We shall illustrate this
fact using the approach of [20, 23, 24]. Translating the four different regular singular points
z = 0, 1, 1/a,∞ of equation (5.1) in the compactified complex plane C̃z to the places of the
vortices x = 0, 1, 1 + τ, τ (τ being pure imaginary) of the fundamental rectangle of periods
in the complex plane C̃x by the transformation

z = e1 − e3

℘(x) − e3
, e1,2,3 = ℘(ω1,2,3), (5.2)

6
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℘(x) being the Weierstrass elliptic function with half-periods ω0 = 0, ω1 = 1/2, ω2 =
1/2 + τ/2, ω3 = τ/2, and using in addition the substitution

ψ(x) = z(l0+1)/2(z − 1)(l1+1)/2(1 − az)(l2+1)/2H(z), l0 = γ
G

− 3/2,

l1 = δ
G

− 3/2, l2 = ε
G

− 3/2,
(5.3)

one can transform the general Heun’s equation (5.1) into elliptic form, identical to the BC1
Inozemtsev model:

−d2ψ(x)

dx2
+

3∑
i=0

li(li + 1)℘ (x + ωi)ψ(x) = Eψ(x). (5.4)

Here l3 and E are properly chosen constants. This equation is instrumental for deriving the
results in [20, 23, 24], where slightly different notations are in use (see also the references
therein). Obviously, equation (5.4) has no relevant limit a → 0, since lima→0 |l2| = ∞.

A more fundamental geometrical obstacle to relate the results for general Heun’s equations
and the results for the confluent one is that according to the formulae e3 = − 2−a

1+a
e1, e2 = 1−2a

1+a
e1

one obtains lima→0 e2 = e1. Hence, an elliptic representation of the confluent Heun’s equation
does not exist: as a result of the coalescence process, in it we have only three different singular
points. An analytic map like (5.2) of the triangle of the singular points of the confluent Heun’s
equation onto a rectangle of the periods of elliptic functions is impossible. Hence, there exist
essential differences between the properties of general and confluent Heun’s functions. Note
that some of the properties can be reformulated properly after the coalescence. For example, the
factor (1 − az)(l2+1)/2 has a confluent limit exp(αz/2). As a result a correspondingly modified
substitution (5.3) exists. It transforms the confluent Heun’s equation to the Schrödinger-like
(non-elliptic) form [3–7].

A direct consequence of the above consideration is the need to derive most of the basic
properties of confluent Heun’s functions independently of the properties of general Heun’s
functions. Sometimes one can use similar general methods in both cases. An example is the
generalized Darboux transformation [20], used in section 3 in a specific way, and invented
originally for equation (5.4).

One can hope that the new mathematical results for the confluent Heun’s functions, derived
in the present paper, will be instrumental in different analytical and numerical applications,
and especially in the relativistic theory of gravity.
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Appendix.

The confluent Heun’s equation (2.2) can be rewritten in the transparently self-adjoint form:

e−αzz−β(z − 1)−γ d

dz

(
eαzz1+β(z − 1)1+γ dH(z)

dz

)
+ α

(
δ

α
+

β + γ

2
+ 1

)
zH(z) = μH(z).

(A.1)

7
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Besides, it shows that the natural spectral parameter is μ. Correspondingly, we represent
the left-hand side �N+1(μ) of condition (1.5b) in the form of the specific three-diagonal
determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

μ − q1 1(1 + β) 0 . . . 0
Nα μ − q2 + 1α 2(2 + β) . . . 0
0 (N − 1)α μ − q3 + 2α . . . 0
...

...
...

. . .
...

0 0 0 . . . μ − qN−1 + (N − 2)α

0 0 0 . . . 2α

0 0 0 . . . 0

0 0
0 0
0 0
...

...

(N − 1)(N − 1 + β) 0
μ − qN + (N − 1)α N(N + β)

1α μ − qN+1 + Nα

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A.2)

It turns out to be useful in the real calculations [7]. Here qn = (n − 1)(n + β + γ ).
A similar representation of the second polynomial condition (1.5b) in determinant form

was derived in [5].
Note that we can develop an alternative consideration, interchanging the places of the

regular singular points z = 0 and z = 1. Then because of the obvious symmetry of
equation (1.1) under the change {α, β, γ, δ, μ, ν, z} → {α, γ, β, δ, ν, μ, z − 1}, the spectral
parameter will be −ν.
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